- 1 The equation of a cubic curve is $y = 2x^3 9x^2 + 12x 2$.
 - (i) Find $\frac{dy}{dx}$ and show that the tangent to the curve when x = 3 passes through the point (-1, -41). [5]
 - (ii) Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum. [4]
 - (iii) Sketch the curve, given that the only real root of $2x^3 9x^2 + 12x 2 = 0$ is x = 0.2 correct to 1 decimal place. [3]

- 2 A cubic curve has equation $y = x^3 3x^2 + 1$.
 - (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points. [5]
 - (ii) Show that the tangent to the curve at the point where x = -1 has gradient 9.

Find the coordinates of the other point, P, on the curve at which the tangent has gradient 9 and find the equation of the normal to the curve at P.

Show that the area of the triangle bounded by the normal at P and the *x*- and *y*-axes is 8 square units. [8]

3 A curve has equation $y = x + \frac{1}{x}$.

Use calculus to show that the curve has a turning point at x = 1.

Show also that this point is a minimum.

[5]

- 4 The equation of a curve is $y = 9x^2 x^4$.
 - (i) Show that the curve meets the *x*-axis at the origin and at $x = \pm a$, stating the value of *a*. [2]

(ii) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

Hence show that the origin is a minimum point on the curve. Find the *x*-coordinates of the maximum points. [6]

- (iii) Use calculus to find the area of the region bounded by the curve and the *x*-axis between x = 0 and x = a, using the value you found for *a* in part (i). [4]
- 5 Differentiate $4x^2 + \frac{1}{x}$ and hence find the *x*-coordinate of the stationary point of the curve $y = 4x^2 + \frac{1}{x}$. [5]

The equation of the curve shown in Fig. 11 is $y = x^3 - 6x + 2$.

(i) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$. [2]

(ii) Find, in exact form, the range of values of x for which $x^3 - 6x + 2$ is a decreasing function.

[3]

(iii) Find the equation of the tangent to the curve at the point (-1, 7).

Find also the coordinates of the point where this tangent crosses the curve again. [6]